Russian Federation
Russian Federation
Russian Federation
The work focuses on developing scientific and technical proposals for using scientific and technical tools to analyze data on cybersecurity events. The problem divided into elements (parts-sets) consisting of various types of scientific and technical tools, the purposes of their application, the specifics of the energy sector and previously created components. A review of relevant works also highlighted the following specifics of the field: clustering, static infrastructure, standardization of objects, and determinism of processes, reduced stochasticity of processes, continuity of operation, and criticality for the country. The authors fully combined the elements to obtain the maximum possible set of proposal groups. The formulation of proposals, formally obtained from each group, is suggested. Each such group underwent analysis, identifying proposals applicable to the energy sector, and providing an interpretation.
energy, proposals, tools, cybersecurity, method
1. Kotova O.Yu. Analiz tekushchego sostoyaniya atomnoj ehnergetiki Rossijskoj Federacii i perspektivy razvitiya otrasli do 2030 goda // Vestnik obrazovatel'nogo konsorciuma Srednerusskij universitet. Ser.: Ehkonomika i upravlenie. 2023. № 21. S. 88–91.
2. Natal'son A.V. Formirovanie cifrovykh kompetencij v oblasti kiberbezopasnosti ob"ektov cifrovoj ehnergetiki // Vestnik NCBZHD. 2023. № 3 (57). S. 54–60.
3. Kiberbezopasnost' sistem, realizuyushchikh intensivnoe ispol'zovanie dannykh. Chast' 1. Mesto kiberbezopasnosti v zashchite informacii / V.I. Budzko [i dr.] // Sistemy vysokoj dostupnosti. 2024. T. 20. № 1. S. 16–29. DOI:https://doi.org/10.18127/j20729472-202401-02.
4. Levshun D., Kotenko I. Application of Intelligent Methods of Correlation of System Events in Predictive Analysis of Security States of Objects of Critical Infrastructure // Pattern Recognition and Image Analysis. 2023. Vol. 33. № 3. P. 389–397. DOI:https://doi.org/10.1134/S1054661823030264.
5. Kotenko I., Izrailov K., Buinevich M. Analytical modeling for identification of the machine code architecture of cyberphysical devices in Smart Homes // Sensors. 2022. Vol. 22. № 3. P. 1–28. DOI:https://doi.org/10.3390/s22031017.
6. Kotenko I., Gaifulina D., Zelichenok I. Systematic Literature Review of Security Event Correlation Methods // IEEE Access. 2022. Vol. 10. P. 43387–43420. DOI:https://doi.org/10.1109/ACCESS.2022.3168976.
7. Sosyura B.E. Sovremennoe sostoyanie ehnergeticheskogo sektora, poslednie izmeneniya i ehnergeticheskaya politika // Voprosy ustojchivogo razvitiya obshchestva. 2021. № 1. S. 231–237. DOI:https://doi.org/10.34755/IROK.2021.51.39.004.
8. Vashechkina A.V. Pravovye problemy obespecheniya informacionnoj (kiber-) bezopasnosti ehnergeticheskogo sektora v usloviyakh cifrovizacii // Pravovoj ehnergeticheskij forum. 2023. № 4. S. 90–97. DOI:https://doi.org/10.61525/S231243500029322-2.
9. Karakash N.S., Sklyarov K.A., Tul'skaya S.G. Sistemy bezopasnosti atomnykh ehlektrostancij // Gradostroitel'stvo. Infrastruktura. Kommunikacii. 2023. № 4 (33). S. 41–45.
10. Nucalkhanov G.N. Sovremennye global'nye ugrozy i vyzovy yadernogo terrorizma // International Law Journal. 2019. T. 2. № 4. S. 121–125.
11. Yastrebov A.E., Ruchkin V.N. Primenenie geoinformacionnykh tekhnologij v ehlektricheskikh setyakh edinoj ehnergeticheskoj sistemy Rossii // Informatika i prikladnaya matematika. 2014. № 20. S. 159–166.
12. Parise G., Allegri M., Parise L. Topology of Integrity Resilience for Service Continuity of Critical Loads // In proceedings of IEEE Industry Applications Society Annual Meeting (Baltimore, MD, USA, 29 September 2019 – 3 October 2019). 2019. P. 1–6. DOI:https://doi.org/10.1109/IAS.2019.8912028.
13. Angays P., Tastet J. Design of large power plant in oil and gas facilities // In proceedings of 5th Petroleum and Chemical Industry Conference Europe – Electrical and Instrumentation Applications (Weimar, Germany, 10–12 June 2008). 2008. P. 1–9. DOI:https://doi.org/10.1109/PCICEUROPE.2008.4563526.
14. Skripnik O.B. Osobennosti obespecheniya ehkonomicheskoj bezopasnosti predpriyatij toplivno-ehnergeticheskogo kompleksa Rossii // Ehkonomicheskaya bezopasnost' social'no-ehkonomicheskikh sistem: vyzovy i vozmozhnosti: cb. trudov V Mezhdunar. nauch.-prakt. konf. Belgorod. 2023. S. 76–80.
15. Bugaeva T.M., Viktorova N.G. Osobennosti upravleniya razvitiem ehnergeticheskogo kompleksa megapolisa // Ehkonomicheskie nauki. 2020. № 190. S. 14–19.
16. Chekalin V.S., Lyubarskaya M.A., Ermakova M.Yu. Ehnergeticheskij kompleks krupnogo goroda: problemy i puti razvitiya // Izvestiya Sankt-Peterburgskogo gosudarstvennogo ehkonomicheskogo universiteta. 2020. № 4 (124). S. 56–62.
17. On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective / L. Xu [et al.] // Renewable and Sustainable Energy Reviews. 2021. Vol. 152. P. 111642.
18. Golikov S.E. Problemy vnedreniya novykh podkhodov k informacionnoj bezopasnosti v ehnergeticheskoj otrasli // Modelirovanie, optimizaciya i informacionnye tekhnologii. 2020. T. 8. № 1. S. 42–43.
19. Razrabotka modelej i metodov rannego obnaruzheniya kiberatak na ob"ekty ehnergetiki metallurgicheskogo predpriyatiya / A.N. Sokolov [i dr.] // Vestnik URFO. Bezopasnost' v informacionnoj sfere. 2021. № 3 (41). S. 65–87.
20. Govea J., Gaibor-Naranjo W., Villegas-Ch W. Transforming Cybersecurity into Critical Energy Infrastructure: A Study on the Effectiveness of Artificial Intelligence // Systems. 2024. Vol. 12. № 5. P. 165.
21. Bohačík A., Fujdiak R. The Problem of Integrating Digital Twins into Electro-Energetic Control Systems // Smart Cities. 2024. Vol. 7. № 5. P. 2702–2740.
22. SecuriDN: A Modeling Tool Supporting the Early Detection of Cyberattacks to Smart Energy Systems / D. Cerotti [et al.] // Energies. 2024. Vol. 17. № 16. P. 3882.
23. Smart Energy Management System Using Machine Learning / A. Akram [et al.] // Computers, Materials & Continua. 2024. Vol. 78. № 1. P. 959–973.
24. Korchenko M.D. Sposoby primeneniya nejrosetej v ehnergetike // Vestnik nauki. 2024. T. 1. № 6 (75). S. 1444–1448.
25. Novoselov N.D. Integraciya iskusstvennogo intellekta dlya ehnergeticheskoj kompanii // Nauchnyj Lider. 2024. № 3 (153). S. 15–17.
26. Sorokin V.A., Kubrikov M.V. Rekuperacionnoe ustrojstvo s gravitacionnym akkumulyatorom // Aktual'nye problemy aviacii i kosmonavtiki. 2012. T. 1. № 8. S. 72–73.
27. Izrailov K.E., Bujnevich M.V. Metod obnaruzheniya atak razlichnogo geneza na slozhnye ob"ekty na osnove informacii sostoyaniya. Chast' 1. Predposylki i skhema // Voprosy kiberbezopasnosti. 2023. № 3 (55). S. 90–100. DOI:https://doi.org/10.21681/2311-3456-2023-3-90-100.
28. Izrailov K.E., Bujnevich M.V. Metod obnaruzheniya atak razlichnogo geneza na slozhnye ob"ekty na osnove informacii sostoyaniya. Chast' 2. Algoritm, model' i ehksperiment // Voprosy kiberbezopasnosti. 2023. № 4 (56). S. 80–93. DOI:https://doi.org/10.21681/2311-3456-2023-4-80-93.
29. Kurta P.A., Bujnevich M.V. Ontologicheskaya model' vzaimodejstviya pol'zovatelya s informacionnoj sistemoj v ramkakh polucheniya uslugi informacionnogo servisa // Vestnik kibernetiki. 2021. № 2 (42). S. 17–23. DOI:https://doi.org/10.34822/1999-7604-2021-2-17-23.
30. Kurta P.A. Vzaimodejstvie pol'zovatelya s informacionnoj sistemoj. Chast' 1. Skhema vzaimodejstviya i klassifikaciya nedostatkov // Izvestiya SPBGEHTU LEHTI. 2020. № 8–9. S. 35–45.
31. Kurta P.A. Vzaimodejstvie pol'zovatelya s informacionnoj sistemoj. Chast' 2. Algoritmy obnaruzheniya nedostatkov // Izvestiya SPBGEHTU LEHTI. 2020. № 10. S. 34–44.
32. Kurta P.A. Vzaimodejstvie pol'zovatelya s informacionnoj sistemoj. Chast' 3. Ocenka ehffektivnosti // Izvestiya SPBGEHTU LEHTI. 2021. № 4. S. 58–72.
33. Ocenivanie i prognozirovanie sostoyaniya slozhnykh ob"ektov: primenenie dlya informacionnoj bezopasnosti / K.E. Izrailov [i dr.] // Voprosy kiberbezopasnosti. 2022. № 6 (52). S. 2–21. DOI:https://doi.org/10.21681/2311-3456-2022-6-2-21.
34. Ryabin T.V., Sorokin D.V. Tendencii razvitiya tekhnologii global'nykh ehlektricheskikh setej // Ehnergiya edinoj seti. 2019. № 2 (44). S. 64–73.
35. Shevchenko M.E. Sravnitel'nyj analiz kriteriev obnaruzheniya anomalij v rabote ehnergeticheskogo oborudovaniya // Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I. Razzakova. 2024. № 2 (70). S. 765–772. DOI:https://doi.org/10.56634/16948335.2024.2.765-772.
36. Kratkij otchet o rezul'tatakh dopolnitel'nykh analizov zashchishchennosti dejstvuyushchikh rossijskikh AEHS ot vneshnikh ehkstremal'nykh vozdejstvij // Yadernaya i radiacionnaya bezopasnost'. 2012. № 1 (63). S. 3–8.
37. Komarov Yu.A. Vozmozhnosti risk-orientirovannogo podkhoda k probleme povysheniya nadezhnosti i bezopasnosti AEHS // Teploehnergetika. 2014. № 10. S. 12. DOI:https://doi.org/10.1134/S0040363614090082.
38. Subbotin S.A. Aktualizaciya problem bezopasnosti i strategiya upravleniya zhiznennym ciklom AEHS i atomnoj ehnergetikoj // Ehnergiya: ehkonomika, tekhnika, ehkologiya. 2013. № 4. S. 27–31.
39. Rakut'ko S.A., Ivannikova N.Yu., Zakirova V.R. Optimizacionnye zadachi obespecheniya nadezhnosti ehnergeticheskikh sistem metodami matematicheskogo modelirovaniya // Mezhdunarodnyj tekhniko-ehkonomicheskij zhurnal. 2019. № 3. S. 7–15. DOI:https://doi.org/10.34286/1995-4646-2019-66-3-7-15.
40. Vilkov N.Ya., Kryukov Yu.V. Matematicheskoe obespechenie rannej identifikacii anomalij vodno-khimicheskogo rezhima na AEHS po dannym operativnogo khimicheskogo kontrolya // Teploehnergetika. 2000. № 5. S. 25–28.
41. Asoskov S., Krupovich V., Capenko A. Reshenie zadach preduprezhdeniya i snizheniya narushenij v rabote ehnergooborudovaniya OOO «Gazprom ehnergO» // Ehlektroehnergiya. Peredacha i raspredelenie. 2013. № 6 (21). S. 142–147.
42. Kurta P.A., Kolomeec M.V. Obobshchennaya klassifikaciya interfejsov transportnoj infrastruktury «Umnogo GorodA» // Vestnik kibernetiki. 2020. № 4 (40). S. 6–13. DOI:https://doi.org/10.34822/1999-7604-2020-4-6-13.