Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
Military academy of communications named after Marshal of the Soviet Union S.M. Budyonny (department of radio communications, professor)
Saint-Petersburg, Russian Federation
The purpose of this work is to develop a method for adaptive adjustment of the decision threshold value, which will allow demodulation of signal packets in the form of long sequences of amplitude-manipulated zeros (ones) transmitted in channels with fading with minimal errors. To achieve this goal, an analysis of existing prototype devices was carried out, the conditions of their applicability, weaknesses and properties were identified, on the basis of which a block diagram of the device was developed. To substantiate the advantages of the proposed demodulator, its experimental verification was performed. The experimental results show that the developed device has higher noise immunity indicators compared to the considered signal demodulators, providing, under certain parameters, almost error-free demodulation of amplitude manipulation signals, which include long sequences of zeros and ones in the presence of fading in the channel. The developed device can significantly increase the noise immunity of radio communication systems in the decameter range.
fading channel, amplitude modulation signals, adaptive decision threshold, demodulation error
1. Bryuhanov Yu.A., Poeluev S.S., Nadin V.S. Vliyanie garmonicheskoj pomekhi na priem signalov s kvadraturnoj amplitudnoj manipulyaciej // Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 9. S. 66–72. DOI:https://doi.org/10.18127/j20700784-202209-04.
2. Upravlenie parametrami signalov s amplitudnoj manipulyaciej v radioliniyah morskoj podvizhnoj sluzhby / A.A. Pavlov [i dr.] // Informaciya i kosmos. 2023. № 2. S. 12–17. EDN GEDBJE.
3. Bryuhanov Yu.A., Lukashevich Yu.A. Effekty kvantovaniya signalov s amplitudnoj manipulyaciej // Radiotekhnika. 2020. T. 84. № 1 (1). S. 42–48. DOI:https://doi.org/10.18127/j00338486-202001(01).
4. Pomekhoustojchivost' priema signalov s kvadraturnoj amplitudnoj manipulyaciej v prisutstvii fazomanipulirovannoj pomekhi / G.V. Kulikov [i dr.] // Zhurnal radioelektroniki. 2019. № 7. S. 2. DOI:https://doi.org/10.30898/1684-1719.2019.7.10. EDN AUSXBS.
5. Dovbnya V.G., Koptev D.S. Sposoby vosstanovleniya nesushchego kolebaniya dlya demodulyatorov signalov s kvadraturnoj amplitudnoj manipulyaciej // Telekommunikacii. 2020. № 8. S. 2–7. EDN DXGGVB.
6. Analiz faktorov, vliyayushchih na pomekhoustojchivost' signalov kvadraturnoj amplitudnoj manipulyacii / S.V. Dvornikov [i dr.] // Voprosy radioelektroniki. Ser.: Tekhnika televideniya. 2014. № 1. S. 3–11. EDN TFLMUH.
7. Dovbnya V.G., Sevryukov A.E. Vliyanie nelinejnyh iskazhenij na pomekhoustojchivost' priema signalov s kvadraturnoj amplitudnoj manipulyaciej // Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Ser.: Upravlenie, vychislitel'naya tekhnika, informatika. Medicinskoe priborostroenie. 2015. № 3 (16). S. 49–55. EDN VAWEMZ.
8. Bystryj cifrovoj algoritm demodulyacii signalov s kvadraturnoj amplitudnoj manipulyaciej / V.P. Litvinenko [i dr.] // Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. T. 14. № 4. S. 108–112. EDN XWHIBV.
9. Pavlov A.A., Dvornikov S.V. Povyshenie energeticheskogo potenciala linij radiosvyazi s amplitudnoj modulyaciej // Morskoj vestnik. 2023. № 2 (86). S. 79–82.
10. Obshchaya teoriya svyazi / D.L. Burachenko [i dr.]; pod red. L.M. Finka. L.: VAS, 1970. 412 s.
11. Dvornikov S.S. Adaptivnyj porog prinyatiya resheniya na osnove aposteriornoj obrabotki signalov // Informaciya i kosmos. 2020. № 3. S. 26–33.
12. Bryuhanov Yu.A., Poeluev S.S. Vliyanie garmonicheskoj pomekhi na veroyatnost' oshibochnogo priema signalov s amplitudnoj manipulyaciej // Uspekhi sovremennoj radioelektroniki. 2022. T. 76. № 1. S. 69–75. DOI:https://doi.org/10.18127/j20700784-202201-06.
13. Zhukova I.N. Imitacionnoe modelirovanie obrabotki slozhnyh signalov s psevdosluchajnym zakonom amplitudnoj manipulyacii v RLS s sintezirovaniem apertury // Vestnik Novgorodskogo gosudarstvennogo universiteta. 2013. № 75-2. S. 17–21. EDN SGWLRZ.
14. Oroshchuk I.M. Dinamicheskaya model' releevskogo kanala s zamiraniyami // Zhurnal radioelektroniki. 2002. № 10. S. 4.
15. Demodulyator signalov amplitudnoj manipulyacii: pat. 2781271 Ros. Federaciya / S.V. Dvornikov [i dr.]; zayavitel' i patentobladatel' Sankt-Peterburgskij gosudarstvennyj universitet aerokosmicheskogo priborostroeniya. № 2022108363; zayavl. 30.03.22; opubl. 11.10.22.
16. Denisov V.E. Vliyanie neravnomernosti chastotnoj harakteristiki zatuhaniya morskoj sredy na pomekhoustojchivost' kogerentnogo priema binarnyh signalov s amplitudnoj manipulyaciej i s pryamougol'noj ogibayushchej // Fundamental'nye problemy radioelektronnogo priborostroeniya. 2016. T. 16. № 5. S. 247–250.
17. GOST 33973–2016. Zheleznodorozhnaya elektrosvyaz'. Poeznaya radiosvyaz'. Tekhnicheskie trebovaniya i metody kontrolya // ELEKTRONNYJ FOND pravovoj i normativno-tekhnicheskoj dokumentacii. URL: http://www.docs.cntd.ru (data obrashcheniya: 24.12.2024).
18. Issledovanie raboty modeli priyomnogo ustrojstva cifrovogo kanala svyazi / V.V. Andreev [i dr.] // Original'nye issledovaniya. 2023. T. 13. № 3. S. 267–274.
19. Zhdanova I.M., Dvornikov S.S., Dvornikov S.V. Obnaruzhenie anomalij trafika na osnove obrabotki ih frejmovyh vejvlet-preobrazovanij // Trudy uchebnyh zavedenij svyazi. 2024. T. 10. № 5. S. 14–23. DOI:https://doi.org/10.31854/1813-324X-2024-10-5-14-23. EDN BJFZSE.
20. Posyagin A.I., Yuzhakov A.A. Razrabotka dvuhslojnoj nejronnoj seti dlya samomarshrutiziruyushchegosya analogo-cifrovogo preobrazovatelya na osnove nejronnoj seti // Elektrotekhnika. 2013. № 11. S. 10–13. EDN RERAAL.