Russian Federation
State fire service of EMERCOM of Russia (department of fire safety of transport of the Scientific research institute for advanced research and innovative technologies in the field of life safety, chief researcher)
Russian Federation
Saint-Petersburg university of State fire service of EMERCOM of Russia (department of fire extinguishing and emergency rescue operations, professor)
Russian Federation
The article considers methodological issues of early warning of hazardous weather phenomena that have a significant impact on the safety of aviation flights in extreme conditions.Three possible typical scenarios of an aircraft's presence (flight) in extreme atmospheric conditionsare studied in the context of improving flight safety. An original algorithm has been developed that allows, based on information on the vertical distribution of meteorological parameters obtained during temperature and wind soundingof the atmosphere, to unambiguously judge the inhomogeneous layers of the atmosphere that affectthe safety of aircraft at all stages of flight. The obtained results can be used to prevent aviation accidents and highly effective useof aviation in emergencies when performing special aviation work
emergency, aviation flight safety, extreme conditions
1. Vinogradova E.S. Vliyanie chelovecheskogo faktora na bezopasnost' polyotovv grazhdanskoj aviacii // Sistemnyj analiz i logistika. 2024. № 2 (40). S. 73–81. DOI:https://doi.org/10.31799/2077-5687-2024-2-73-81.
2. Sovershenstvovanie metoda prognoza opasnyh yavlenij pogody dlya obespecheniya bezopasnosti poletov aviacii / N.O. Moiseeva [i dr.] // Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa: materialy 20-j Mezhdunar. konf. M.: IKI RAN, 2022. C. 435.DOI:https://doi.org/10.21046/20DZZconf-2022a.
3. Kuznecov A.A., Kuznecova Yu.Yu. Vliyanie chelovecheskogo faktora na bezopasnost' poletov pri tekhnicheskom obsluzhivanii vozdushnyh sudov // Innovacii v grazhdanskoj aviacii. 2017. T. 2. № 3. S. 82–89.
4. Bobrov V.N., Nakhmanson G.S. Seasonal and diurnal variations of the vertical profileof the refractive index in the atmospheric surface layer // Russian Meteorology and Hydrology. 2002.№ 12. P. 27–29.
5. Towards precision aviation emission modeling: A hybrid paradigm of convolutional neural networks and semi-empirical formulas for full flight phase gas pollutant indices / L. Chen [et al.] // Science of The Total Environment. 2024. Vol. 957. P. 177414. DOI:https://doi.org/10.1016/j.scitotenv.2024.177414.
6. Astapenko P.D., Baranov A.M., Shvarev I.M. Pogoda i polety samoletov i vertoletov.L.: Gidrometeoizdat, 1980. 280 s.
7. Baranov A.M. Oblaka i bezopasnost' poletov. L.: Gidrometeoizdat, 1983. 203 s.
8. Stull R.B. An introduction to boundary layer meteorology // Springer Science & Business Media. 2012. T. 13.
9. Garratt J.R. The atmospheric boundary layer. Cambridge: Cambridge atmospheric and space science series, 1992.
10. Day J.A. The Book of Cloud. Sterling Publishing Company, Inc., 2005. P. 127.
11. Vorob'ev V.I. Sinopticheskaya meteorologiya. L.: Gidrometeoizdat, 1991. 616 s.
12. Bobrov V.N., Nakhmanson G.S. The influence of vertical distribution of the atmospheric refractive index on the visual detection of a runaway from an aircraft // Russian meteorology and hydrology. 2003. № 1. R. 42–46.
13. Bobrov V.N. Uchet informacionnyh resursov gradientnoj atmosfery pri proektirovanii elektronnyh sredstv kontrolya // Proektirovanie i tekhnologiya elektronnyh sredstv. 2013. № 2.S. 51–54.
14. Bobrov V.N., Korchagin V.V. Postroenie matematicheskoj modeli sluchajnogo polozheniya vozdushnogo sudna pri zahode na posadku // Sovremennye problemy naukii obrazovaniya. 2014. № 6. S. 22.




