Russian Federation
St. Petersburg, Russian Federation
Effective prevention of emergencies at industrial facilities is impossible without a well-founded selection of monitoring and control equipment for production processes, which should account not only for compliance with regulations but also for its contribution to risk reduction. This study presents a risk-oriented methodology for selecting off-the-shelf monitoring and control devices, based on a quantitative relationship between potential damage and the root mean square error of measurements. A decision-making algorithm is proposed that aims to minimize damage resulting from control errors under budget constraints. The methodology includes ranking monitored parameters by risk level, assessing potential damage reduction through equipment modernization, and selecting the optimal combination of replacements considering associated costs. A key feature of the approach is the use of metrological characteristics as the main criterion for effectiveness. To demonstrate the applicability of the methodology, a case study is conducted for a metallurgical plant. The methodology can be applied during the design, audit, and modernization of industrial monitoring systems.
technogenic safety, industrial process safety, industrial process parameter monitoring, industrial monitoring, selection of monitoring tools, risk-oriented industrial monitoring
1. Fursova T.V., Fateev K.V. Iznos osnovnyh fondov na predpriyatiyah Rossii kak problema realizacii programmy importozameshcheniya // Vestnik MFYUA. 2024. № 1. S. 209–216.
2. Kudrevatyh N.V. Ekonomicheskaya bezopasnost' regiona: ucheb. posobie dlya studentov. SPb.: IC Intermediya, 2016. 168 s.
3. Gumenyuk V.I., Lomasov V.N. Radiacionnaya, himicheskaya i biologicheskaya bezopasnost'. SPb.: Sankt-Peterburgskij politekhnicheskij universitet, 2016. 347 s.
4. Akimov V.A., Lesnyh V.V., Radaev N.N. Osnovy analiza i upravleniya riskom v prirodnoj i tekhnogennoj sferah. M.: Delovoj ekspress, 2004. 352 s.
5. Naimov H.F., Kulmatova L.S. Istoriya i razvitie Rogunskoj GES // Problemy nauki. 2019. № 4 (40). S. 65–69.
6. Nikulina D. P. Sovershenstvovanie sistemy kompleksnogo monitoringa tekhnicheskogo sostoyaniya ploshchadnyh ob"ektov magistral'nyh gazoprovodov: dis. … kand. tekhn. nauk. M.: RGU nefti i gaza im. I. M. Gubkina, 2021. 150 s.
7. Yakovlev D.Yu., Chursin S.E. Metodika vybora sredstv izmerenij v usloviyah mnogoparametricheskogo monitoringa // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Ser.: Energetika. 2020. № 2. S. 45–51.
8. Dunaev A.I., Karyakin S.V. Integraciya datchikov v SCADA: vybor i kriterii // Vestnik MEI. 2021. № 4. S. 62–68.
9. A Cost-Effective Approach for Sensor Selection in Large-Scale Monitoring Systems /H. Saha [et al.] // Soft Computing. 2019. Vol. 24. P. 13567–13578.
10. Soldatov S. Integraciya SCADA‑sistem i sistem upravleniya predpriyatiem // V Zapisnuyu knizhku inzhenera. 2015. S. 90–94. URL: https://www.cta.ru/articles/cta/spravochnik/v-zapisnuyu-knizhku-inzhenera/124560/ (data obrashcheniya: 01.07.2025).
11. Myorfi K. Vybor podhodyashchego datchika dlya prediktivnogo tekhnicheskogo obsluzhivaniya // Elektronika: nauka, tekhnologiya, biznes. 2020. № 9. S. 96–102.
12. Egorov A. A. Sistematika, principy raboty i oblasti primeneniya datchikov // Zhurnal radioelektroniki. 2009. № 3. S. 1–22.
13. Integration of Legacy Industrial Equipment in a Building Management System Industry 5.0 Scenario / A. Korodi [et al.] // Electronics. 2024. Vol. 13. № 16. Article 3229. URL: https://www.mdpi.com/2079-9292/13/16/3229 (data obrashcheniya: 01.07.2025).
14. Modular Sensor Platform for Service Oriented Cyber Physical Systems in the European Tool Making Industry / G. Schuh [et al.] // Procedia CIRP. 2014. Vol. 17. P. 374–379.
15. Al B'ool Sh. M. Selection of Temperature Measuring Sensors Using the Analytic Hierarchy Process // Systems Science and Industrial Engineering Faculty Scholarship (Binghamton Univ.). 2011. Article 9. URL: https://orb.binghamton.edu/systems_fac/9 (data obrashcheniya: 01.07.2025).
16. A Comprehensive Review of Digital Twin – Part 1: Modeling and Twinning Enabling Technologies / A. Thelen [et al.] // Structural and Multidisciplinary Optimization. 2022. Vol. 65. № 12. Article 354.
17. Garelina S.A. Snizhenie riska chrezvychajnyh situacij na proizvodstvennyh ob"ektah // Nauchnye i obrazovatel'nye problemy grazhdanskoj zashchity obrazovaniya. 2023. № 4 (59). S. 30–42.
18. Garelina S.A., Latyshenko K.P., Frunze A.V. Metody i sredstva izmerenij temperatury. Pirometry. Issledovanie i razrabotka. Himki: AGZ MCHS Rossii, 2022. 156 s.
19. Ocenka perspektivnosti primeneniya novogo gazoanalizatora «Megakon-10K» v MCHS Rossii / S.A. Garelina [i dr.] // Al'ternativnaya energetika i ekologiya. 2014. № 22 (162). S. 24–29.
20. Matematicheskoe modelirovanie dozimetricheskih sistem kontrolya / I.Yu. Sergeev [i dr.] // Sibirskij pozharno-spasatel'nyj vestnik. 2020. № 1. C. 60–64.




