On the main pipelines, accidents of different severity occur each year, which can damage the health and life of people, accompanied by huge material damage. In this connection, the importance of developing and implementing new methods for analyzing reliability and methods for monitoring the safe operation of linearly extended objects becomes important. Currently, in addressing these issues, much attention is paid to neural network technologies.
ܶ, main gas pipelines, ܝ fire and explosionܝ hazards, ܝ monitoring, ܝ neuralܝ network model, algorithm of the functioning
1. STO Gazprom2-2.3-253-2009. Metodika ocenki tehnicheskogo sostoyaniya i celostnosti magistral'nyh gazoprovodov. M.: Gazprom ekspo, 2009. 38 s.
2. STO Gazprom 2-2.1-1043-2016. Avtomatizirovannyy gazovyy promysel. Tehnicheskie trebovaniya k tehnologicheskomu oborudovaniyu i ob'emam avtomatizacii pri proektirovanii i obustroystve na principah malolyudnyh tehnologiy. M.: Gazprom ekspo, 2016. 31 s.
3. Buvalyy G.E., Zavershinskiy V.S. Metody postroeniya sistem monitoringa i diagnostiki oborudovaniya i sredstv avtomatizacii gazovyh promyslov s uchetom trebovaniy normativnoy dokumentacii PAO «Gazprom» // Gazovaya promyshlennost'. 2017. № 3 (749). S. 85-91.
4. Korol'kov A.P., Kolesnikov D.A. Perspektivy primeneniya neyrotehnologiy v celyah monitoringa sostoyaniya magistral'nyh nefteprovodov v Arkticheskoy zone // Problemy upravleniya riskami v tehnosfere. 2016. № 3 (39). S. 6-12.
5. Kruglov V.V., Borisov V.V. Iskusstvennye neyronnye seti. Teoriya i praktika. M.: Goryachaya liniya - Telekom, 2002. 382 s.