Russian Federation
Russian Federation
Russian Federation
When the body of dams of various types is destroyed, the problems of interaction of water flows with soil from local materials and with the concrete base of the dam, as well as the development of filtration processes in the body of the dam, become relevant. This model allows us to describe both the mechanism of failure of mixed-type dams and the erosion of soil in the coastal zone, for example, formed as a result of a breakthrough wave, which leads to catastrophic consequences. To obtain practical results, there is a need to simplify the processes being studied. The main problem in problems of soil erosion by turbulent water flow is an adequate description of sediment transport. Typically, for these purposes, semi-empirical formulas are used, obtained for various conditions (extremely rarely specified) and giving very different results. In this work, to describe the processes of soil erosion, the theory of the bottom layer is used, which makes it possible to derive a formula for sediment consumption theoretically. The proposed model combines approaches developed in well-known models of continuum theory and hydraulics.
destruction of the dam body, interaction of water flows with soil, physical and mathematical model, sediment transport, theory of the bottom layer
1. Rozov A.L. Puti umen'sheniya ushcherba pri zatoplenii rechnyh dolin volnoj proryva // Problemy bezopasnosti i chrezvychajnyh situacij. 2015. № 2. S. 119–125.
2. Razrabotka fiziko-matematicheskoj modeli processa razrusheniya plotin / A.L. Rozov [i dr.] // Aktual'nye problemy zashchity i bezopasnosti: tr. XXV Vseros. nauch.-prakt. konf. SPb., 2022. S. 234–241.
3. Sainov M.P. Izmenenie napryazhenno-deformirovannogo sostoyaniya zhelezobetonnogo ekrana kamenno-nabrosnoj plotiny v zavisimosti ot ego tolshchiny // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Ser.: «Stroitel'stvo i arhitektura». Volgograd, 2019. S. 17–23.
4. Soroka V.B., Sainov M.P., Korolev D.V. Kamenno-nabrosnoj plotiny s zhelezobetonnym ekranom: opyt issledovanij napryazhenno-deformirovannogo sostoyaniya // Vestnik MGSU. 2019. T. 14. № 2 (125). S. 207–224.
5. Aniskin N.A., Shajtanov A.M. Stroitel'stvo, konstrukcii i innovacii plotin iz malocementnogo betona // Vestnik MGSU. T. 15. 2020. № 7. S. 1018–1029.
6. Aniskin N.A., Shajtanov A.M. Matematicheskaya model' formirovaniya temperaturnogo rezhima gravitacionnoj plotiny iz ukatannogo betona // Sovremennye problemy gidravliki i gidrotekhnicheskogo stroitel'stva: sb. tezisov dokladov V Vseros. nauch.-prakt. seminara. 2022. S. 64–65.
7. Veksler A.B., Petrov O.A. Raschetnoe opredelenie svyazi raskhodov i urovnej vody v nizhnih b'efah GES pri transformacii rusla // Gidrotekhnicheskoe stroitel'stvo. 2019. № 10. S. 42–49.
8. Hodzinskaya A.G., Zommer V.L. Gidravlicheskie issledovaniya donnyh regulyacionnyh ustrojstv // Vestnik MGSU. 2019. T. 14. № 4 (127). S. 464–472.
9. Chalov R.S., Kamyshev A.A. Morfodinamika i gidromorfologiya rechnyh rusel kak razdely ucheniya o ruslovyh processah // Izvestiya rossijskoj akademii nauk. Ser. geograficheskaya. 2020. T. 84. № 6. S. 844–854.
10. Raschet morfometricheskih harakteristik prorana i maksimal'nyh raskhodov pri proryvah gruntovyh plotin / T.A. Vinogradova [i dr.] // Gidrosfera. Opasnye process i yavleniya. 2019. T. 1. № 2. S. 280–295.
11. Veksler A.B. Transformaciya rusla nizhnih b'efov, ee vliyanie na usloviya raboty gidroelektrostancii i sooruzhenij gidrouzlov // Gidrotekhnicheskoe stroitel'stvo. 2021. № 9. S. 6–17.
12. Vitohin E.Yu., Cejtlin B.V., Ivanov P.S. Sovershenstvovanie metodiki rascheta kolebanij v sisteme «Arochno-gravitacionnaya plotina – osnovanie» pri sejsmicheskih vozdejstviyah // Gidrotekhnicheskoe stroitel'stvo. 2021. № 8. S. 52–59.
13. Modelirovanie deformacij rusel, slozhennyh merzlymi porodami, pri povyshenii temperatury okruzhayushchej sredy / E.I. Debol'skaya [i dr.] // Led i sneg. 2013. № 1 (121). S. 104–110.
14. Kovyazina I.A., Bayandina D.S. Faktory formirovaniya stoka vzveshennyh nanosov rek i metody ego kolichestvennoj ocenki // Razvitie geograficheskih issledovanij v Belarusi v XX–XXI vekah. Minsk: BGU, 2021. S. 478–483.
15. Voznesenskaya N.V. Ocenka parametrov sostoyaniya betonnyh plotin v usloviyah dlitel'noj ekspluatacii s ispol'zovaniem kosvennyh izmerenij // Gidrotekhnicheskoe stroitel'stvo. 2019. № 3. S. 2–8.
16. Vojnich-Syanozhenskij T.G., Pokrovskij G.I. Analiz prichin avarij gruntovyh podpornyh sooruzhenij vodohozyajstvennyh sistem kompleksnogo naznacheniya // Vodosnabzhenie i sanitarnaya tekhnika. 2012. № 2. S. 47–52.
17. Lyapichev Yu.L. Vybor matematicheskih modelej gruntov v staticheskih i sejsmicheskih raschetah gruntovyh plotin // Stroitel'naya mekhanika inzhenernyh konstrukcij i sooruzhenij. 2020. T. 16. № 4. S. 261–270.
18. Ikramov N.M., Mazhidov T.Sh. Vliyanie neodnorodnosti donnyh nanosov na dlinu i skorost' peremeshcheniya gryadovyh form rusla // Sovremennye usloviya vzaimodejstviya nauki i tekhniki. 2017. Ch. 2. S. 60–65.
19. Kozlov D.V. Bezopasnost' i ekspluatacionnaya rabotosposobnost' gruntovyh plotin na vodnyh ob"ektah moskovskogo regiona // Gidrotekhnika. 2021. № 1 (62). S. 56–59.
20. Marchuk A.N., Marchuk I.A. Gidravlika flyuida – sensor izmenenij polya napryazhenij v osnovaniyah bol'shih plotin // Gidrotekhnicheskoe stroitel'stvo. 2020. № 3. S. 28–31.