ОБЗОР МЕТОДОВ РАЗРУШАЮЩЕГО КОНТРОЛЯ СОСТОЯНИЯ БЕТОННЫХ КОНСТРУКЦИЙ ПОСЛЕ ПОЖАРА
Аннотация и ключевые слова
Аннотация (русский):
Установлено, что оценка состояния бетонных конструкций является важнейшим аспектом современной строительной инженерии, а диагностика бетонных конструкций на месте пожара необходима для принятия обоснованных решений о возможности ведения спасательных и неотложных аварийно-восстановительных работ, организации следственных действий и других мероприятий. Констатировано, что для того, чтобы устранить эти ограничения, более распространенной альтернативной стратегией является сочетание прямых испытаний на сжатие с передовыми методами неразрушающего контроля, такой подход позволяет более эффективно и точно оценивать качество конструкционного материала без необходимости в обширном отборе проб и проведении разрушающих испытаний. Проанализированы основные методы неразрушающего контроля: акустические, оптические, электромагнитные, тепловые и рентгенографические. Поставлена задача – выработка объективных критериев выбора методов неразрушающего контроля для оценки состояния бетонных конструкций после пожара.

Ключевые слова:
пожар, бетон, бетонная конструкция, неразрушающий контроль, методы неразрушающего контроля
Список литературы

1. Standard test method for compressive strength of cylindrical concrete specimens.ASTM international, 2014.

2. Advances in applications of Non-Destructive Testing (NDT): A review / M. Gupta [et al.] // Advances in Materials and Processing Technologies. 2022. № 8 (2). P. 2286–2307.

3. Development of prediction models for mechanical properties and durability of concrete using combined nondestructive tests / K. Amini [et al.] // Journal of Materials in Civil Engineering. 2019. № 31 (2). P. 04018378.

4. Assessment of concrete strength using the combination of NDT – Review and Performance Analysis / B. Kouddane [et al.] // Applied Sciences. 2022. № 12 (23). P. 12190.

5. Assessment of concrete strength combining direct and NDT measures via Bayesian inference / R. Giannini [et al.] // Engineering structures. 2014. № 64. P. 68–77.

6. Prassianakis I., Giokas P. Mechanical properties of old concrete using destructive and ultrasonic non-destructive testingmethods // Magazine of Concrete Research. 2003. № 55 (2).P. 171–176.

7. Rajabi A.M., Omidi Moaf F., Abdelgader H.S. Evaluation of mechanical propertiesof two-stage concrete and conventional concrete using nondestructive tests // Journal of Materialsin Civil Engineering. 2020. № 32 (7). P. 04020185. Review and performance analysis. Applied Sciences. 2022. № 12 (23). P. 12190.

8. Aghaee K., Yazdi M.A., Tsavdaridis K.D. Investigation into the mechanical propertiesof structural lightweight concrete reinforced with waste steel wires // Magazine of Concrete research. 2015. № 67 (4). P. 197–205.

9. Esteves I.C., Medeiros-Junior R.A., Medeiros M.H. NDT for bridges durability assessment on urban-industrial environment in Brazil // International Journal of Building Pathology and Adaptation. 2018. № 36 (5). P. 500–515.

10. Hoła J., Bień J., Schabowicz K. Non-destructive and semi-destructive diagnosticsof concrete structures in assessment of their durability // Bulletin of the Polish Academy of Sciences. Technical Sciences. 2015. № 63 (1). P. 87–96.

11. Locating hidden elements in walls of cultural heritage buildings by using infrared thermography / H. Glavaš [et al.] // Buildings. 2019. № 9 (2). P. 32.

12. Forde M.C. International practice using NDE for the inspection of concrete and masonry arch bridges // Bridge Structures. 2010. № 6 (1, 2). P. 25–34.

13. Mata R., Ruiz R.O., Nuñez E. Correlation between compressive strength of concrete and ultrasonic pulse velocity: A case of study and a new correlation method // Construction and Building Materials. 2023. № 369. P. 130569.

14. Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity / H. Yang [et al.] // Fire safety journal. 2009. № 44 (1). P. 121–130.

15. Bonagura M., Nobile L. Artificial neural network (ANN) approach for predicting concrete compressive strength by SonReb. Struct. Durab // Health Monit. 2021. № 15. P. 125–137.

16. Breccolotti M., Bonfigli M.F. I-SonReb: an improved NDT method to evaluatethe in situ strength of carbonated concrete // Nondestructive Testing and Evaluation. 2015. № 30 (4). P. 327–346.

17. Measurement of accelerated steel corrosion in concrete using ground-penetrating radar and a modified half-cell potential method / W.L. Lai [et al.] // Journal of Infrastructure Systems. 2013. № 19 (2). P. 205–220.

18. Non destructive health evaluation of concrete bridge decks by GPR and half cell potential techniques / J. Rhazi [et al.] // International Symposium on Non-Destructive Testingin Civil Engineering. 2003.

19. Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests / M. Shariati [et al.] // Scientific research and essays. 2011. № 6 (1). P. 213–220.

20. Sanchez K., Tarranza N. Reliability of rebound hammer test in concrete compressive strength estimation // Int. J. Adv. Agric. Environ. Eng. 2014. № 1 (2). P. 198–202.

21. Kazemi M., Madandoust R., De Brito J. Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing // Construction and Building Materials. 2019. № 224. P. 630–638.

22. Compressive strength of solid clay brickwork of masonry bridges: Estimate through Schmidt Hammer tests / A. Brencich [et al.] // Construction and Building Materials. 2021. № 306.P. 124494.

23. Balla B., Orbán Z., Len A. Assessing the reliability of single and combined diagnostic tools for testing the mechanical properties of historic masonry structures // Pollack Periodica. 2019. № 14 (3). P. 31–42.

24. Breccolotti M., Bonfigli M.F. I-SonReb: an improved NDTmethod to evaluatethe in situ strength of carbonated concrete // Nondestructive Testing and Evaluation. 2015. № 30 (4). P. 327–346.

25. Pull-off testing as an interfacial bond strength assessment of CFRP-concrete interface exposed to a marine environment / H. Fazli [et al.] // International Journal of Adhesion and Adhesives. 2018. № 84. P. 335–342.

26. Reliability of the pull-off test for in situ evaluation of adhesion strength /N. Ramos [et al.] // Construction and Building Materials. 2012. № 31. P. 86–93.

27. Bonaldo E., Barros J.A., Lourenço P.B. Bond characterization between concrete substrate and repairing SFRC using pull-off testing // International journal of adhesion and adhesives. 2005. № 25 (6). P. 463–474.

28. Non-destructive identification of pull-off adhesion between concrete layers /Ł. Sadowski // Automation in Construction. 2015. № 57. P. 146–155.

29. Mechanical characterization of steelreinforced grout for strengthening of existing masonry and concrete structures / S. Mazzuca [et al.] // Journal of Materials in Civil Engineering. 2019. № 31 (5). P. 04019037.

30. Ground-penetrating radar for the structural evaluation of masonry bridges: Results and interpretational tools / M. Solla [et al.] // Construction and Building Materials. 2012. № 29. P. 458–465.

31. Lombardi F., Lualdi M., Garavaglia E. Masonry texture reconstruction for building seismic assessment: Practical evaluation and potentials of Ground Penetrating Radar methodology // Construction and Building Materials. 2021. № 299. P. 124189.

32. Advances on the use of non-destructive techniques for mechanical characterizationof stone masonry: GPR and sonic tests / R. Martini [et al.] // Procedia Structural Integrity. 2017.№ 5. P. 1108–1115.

33. Alani A.M., Aboutalebi M., Kilic G. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment // Journal of applied geophysics. 2013. № 97. P. 45–54.

34. Beben D., Mordak A., Anigacz W. Ground penetrating radar application to testingof reinforced concrete beams // Procedia Engineering. 2013. № 65. P. 242–247.

35. Kamal A., Boulfiza M. Durability of GFRP rebars in simulated concrete solutions under accelerated aging conditions // Journal of Composites for Construction. 2011. № 15 (4).P. 473–481.

36. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete / P. Zhang [et al.] // Nuclear Engineering and Design. 2011. № 241 (12).P. 4758–4766.

37. De Beer F.C., Le Roux J.J., Kearsley E.P. Testing the durability of concretewith neutron radiography // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005. № 542 (1-3). P. 226–231.

38. Pei C., Wu W., Ueaska M. Image enhancement for on-site Xraynondestructive inspection of reinforced concrete structures // Journal of X-Ray Science and Technology. 2016.№ 24 (6). P. 797–805.

39. Inspection and monitoring of concrete structures via radiography and weighted nuclear norm minimization method / A. Movafeghi [et al.] // Russian Journal of Nondestructive Testing. 2020. № 56. P. 361–368.

40. Bogas J.A., Gomes M.G., Gomes A. Compressivestrength evaluation of structural lightweight concrete by nondestructive ultrasonic pulse velocity method // Ultrasonics. 2013. № 53 (5). P. 962–972.

41. Huang Q., Gardoni P., Hurlebaus S. Predicting Concrete Compressive Strength Using Ultrasonic Pulse Velocity and Rebound Number // ACI Materials Journal. 2011. № 108 (4).

42. Krzemień K., Hager I. Post-fire assessment of mechanical properties of concretewith the use of the impact-echo method // Construction and Building Materials. 2015. № 96. P. 155–163.

43. Epasto G., Proverbio E., Venturi V. Evaluation of firedamaged concrete using impact-echo method // Materials and structures. 2010. № 43. P. 235–245.

44. Measuring the Acoustic Characteristics of Compact Concrete Building Structures Using the Impact EchoMethod / V. Kachanov [et al.] // Russian Journal of Nondestructive Testing. 2022. № 58 (1). P. 1–9.

45. Yang H., Xu X., Neumann I. The benefit of 3D laser scanning technologyin the generation and calibration of FEM models for health assessment of concrete structures // Sensors. 2014. № 14 (11). P. 21889–21904.

46. Law D.W., Silcock D., Holden L. Terrestrial laser scanner assessment of deteriorating concrete structures // Structural Control and Health Monitoring. 2018. № 25 (5). P. e2156.

47. Terrestrial laser scanning-based structural damage assessment / M.J. Olsen [et al.] // Journal of Computing in Civil Engineering. 2010. № 24 (3). P. 26–27.

48. Stewart M.G. Reliability safety assessment of corroding reinforced concrete structures based on visual inspection information // ACI Structural Journal. 2010. № 107 (6). P. 671.

Войти или Создать
* Забыли пароль?