КРАТКИЙ ОБЗОР ВОЗМОЖНОСТЕЙ СОВРЕМЕННЫХ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ПРИ РЕШЕНИИ ЗАДАЧ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ
Аннотация и ключевые слова
Аннотация (русский):
Приведен краткий анализ и обобщение возможностей применения современных беспилотных летательных аппаратов при решении задач по обеспечению безопасности в различных сферах деятельности человека. Отмечены преимущества и недостатки современных беспилотных авиационных систем. Особый акцент при описании сделан на перспективном развитии возможностей беспилотных летательных аппаратов. Отмечено, что до 2030 г. в Российской Федерации предполагается инвестировать 560 млрд руб. в развитие беспилотных летательных систем.

Ключевые слова:
беспилотная авиационная система, цифровые технологии, чрезвычайная ситуация, безопасность
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Андрей Белоусов: c 1 января 2024 года нацпроект по развитию отрасли беспилотников должен заработать в полную силу. URL: http://government.ru (дата обращения: 14.02.2024).

2. A survey of unmanned aircraft system technologies to enable safe operations in urban areas / N. Bloise [et al.] // International Conference on Unmanned Aircraft Systems (ICUAS), IEEE. 2019. P. 433–442.

3. Unmanned aerial vehicle quadcopter: a review / I. Dallal Bashi O. [et al.] // J. Comput. Theor. Nanosci. 2017. № 14 (12). P. 5663–5675.

4. Arafat M.Yu., Moh S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications // IEEE Int. Things J. 2019. № 6. P. 8958–8976. DOI:https://doi.org/10.1109/JIOT.2019.2925567.

5. Poudel S., Moh S. Energy-efficient and fast MAC protocol in UAV-aided wireless sensor networks for time-critical applications // Sensors. 2020. Vol. 21. DOI:https://doi.org/10.3390/s20092635.

6. Poudel S., Moh S. Hybrid path planning for efficient data collection in UAV-aided WSNs for emergency applications // Sensors. 2021. Vol. 21. DOI:https://doi.org/10.3390/s21082839.

7. Multi-objective UAV path planning for search and rescue / S. Hayat [et al.] // Proc. – IEEE Int. Conf. Robot. Autom. 2017. P. 5569–5574. DOI:https://doi.org/10.1109/ICRA.2017.7989656.

8. Waharte S., Trigoni N. Supporting search and rescue operations with UAVs // Learn. Adapt. Behav. Robot. Syst: Proc. – EST 2010 – 2010 Int. Conf. Emerg. Secur. Technol. ROBOSEC 2010 – Robot. Secur. LAB-RS. 2010. P. 142–147. DOI:https://doi.org/10.1109/EST.2010.31.

9. Vincent-Lambert C., Pretorius A., Van Tonder B. Use of Unmanned Aerial Vehicles in Wilderness Search and Rescue Operations: A Scoping Review // Wilderness & Environmental Medicine. 2023. Vol. 34. Iss. 4. P. 580–588. DOI:https://doi.org/10.1016/j.wem.2023.08.022.

10. Cloud-based UAV monitoring and management framework / C. Chen [et al.] // Proc. – 2018 3rd Int. Conf. Control. Robot. Cybern., CRC 2018. P. 61–66. DOI:https://doi.org/10.1109/CRC.2018.00021.

11. Arafat M.Yu., Moh S. Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation // IEEE Access. 2018. № 6. P. 59891–59906. DOI:https://doi.org/10.1109/ACCESS.2018.2875739.

12. A review: UAV-based remote sensing / N. Yin [et al.] // IOP Conf. Ser., Mater. Sci. Eng. 2019. Vol. 490. DOI:https://doi.org/10.1088/1757-899X/490/6/062014.

13. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives / G. Yang [et al.] // Front. Plant Sci. 2017. Vol. 8. DOI:https://doi.org/10.3389/fpls.2017.01111.

14. Arafat M.Yu., Moh S. Bio-inspired approaches for energy-efficient localization and clustering in UAV networks for monitoring wildfires in remote areas // IEEE Access. 2021. Vol. 9. P. 18649–18669. DOI:https://doi.org/10.1109/ACCESS.2021.3053605.

15. Subramaniyaswamy V. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and monitoring for reducing false alarms in forest-fires / S. Sudhakar [et al.] // Computer Communications. 2020. Vol. 149. P. 1–16. DOI:https://doi.org/10.1016/j.comcom.2019.10.007.

16. A review of applications and communication technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) based sustainable smart farming / N. Islam [et al.] // Sustainability. 2021. Vol. 13 (4). P. 1821.

17. Monitoring road traffic with a UAV-based system / M. Elloumi [et al.] // IEEE Wirel. Commun. Netw. Conf., WCNC. 2018. P. 1–6. DOI:https://doi.org/10.1109/WCNC.2018.8377077.

18. Kellermann R., Biehle T., Fischer L. Drones for parcel and passenger transportation: a literature review // Transp. Res. Interdiscip. Perspect. 2020. Vol. 4. DOI: 100088. DOI:https://doi.org/10.1016/j.trip.2019.100088.

19. A cost-efficient elastic UAV relay network construction method with guaranteed QoS / H. Lu [et al.] // Ad Hoc Netw. 2020. Vol. 107. DOI:https://doi.org/10.1016/j.adhoc.2020.102219.

20. Chen W., Zhao S., Shi Q. Improve stability in UAV relay networks by jointly optimizing communication // Trajectory and Power: 2018 IEEE Int. Conf. Commun. Syst., ICCS. 2018. P. 180–185. DOI:https://doi.org/10.1109/ICCS.2018.8689196.

21. Rubin I., Zhang R. Placement of UAVs as communication relays aiding mobile ad hoc wireless networks // Proc. – IEEE Mil. Commun. Conf. MILCOM. 2007. P. 1–7. DOI:https://doi.org/10.1109/MILCOM.2007.4455114.

22. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic / A. Kumar [et al.] // Future Gener. Comput. Syst. 2021. Vol. 115. P. 1–19. DOI:https://doi.org/10.1016/j.future.2020.08.046.

23. Drone-based social distancing, sanitization, inspection, monitoring, and control room for COVID-19 / A. Kumar [et al.] // Artif. Intell. Mach. Learn. COVID-19. 2021. DOI:https://doi.org/10.1007/978-3-030-60188-1_8.

24. Euchi J. Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? // Chin. J. Aeronaut. 2021. Vol. 34. P. 182–190. DOI:https://doi.org/10.1016/j.cja.2020.06.006.

25. Unmanned Aerial Vehicles (UAVs): a survey on civil applications and key research challenges / H. Shakhatreh [et al.] // IEEE Access. 2019. Vol. 7. P. 48572–48634. DOI:https://doi.org/10.1109/ACCESS.2019.2909530.

26. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms / A. Bouguettaya [et al.] // Signal Processing. 2022. Vol. 190. P. 108309. DOI:https://doi.org/10.1016/j.sigpro.2021.108309.

27. Mairaj A., Baba A.I., Javaid A.Yu. Application specific drone simulators: recent advances and challenges // Simul. Modell. Pract. Theory. 2019. Vol. 94. P. 100–117.

28. Statista. URL: https://www.statista.com/chart/17201/commecial-drones-projected-growth/ (дата обращения: 14.02.2024).

Войти или Создать
* Забыли пароль?