Russian Federation
employee
Russian Federation
UDC 629.3
UDC 504.3
The aim of this study is to improve the objectivity and validity of an original methodology for assessing the negative environmental impact of diesel fire trucks on the air by automating the procedure for measuring exhaust gas smoke in free acceleration mode. A robotic manipulator has been developed to replace the human operator during a standardized free acceleration cycle for smoke control, as a technical standard for environmental safety under current legislation. Comparative experimental studies were conducted on a fleet of diesel fire trucks using both a manual method and an automated system. The results were processed using mathematical statistics, including the calculation of the coefficient of variation and linear correlation. The theoretical basis for the diagnostics was provided by physicochemical models of soot formation in the fuel plume and the operation of catalytic converters, described by a system of kinetic equations and the diffusion limitation criterion (Thiele modulus). It has been established that the use of a robotic manipulator can significantly improve the reproducibility of exhaust smoke measurements. The coefficient of variation of the results decreased from 18,1 % (manual method) to 6,9 % (automated method). The obtained stable data allowed us to identify a strong statistically significant correlation between smoke emission and the mileage of fire trucks (determination coefficient R² = 0,87). Smoke emission was shown to be an integral parameter suitable for assessing the reduction in the efficiency of a catalytic converter due to the degradation of its active layer. The scientific novelty lies in the development of a comprehensive methodology integrating a hardware platform, a measurement procedure, and an analytical apparatus based on physicochemical models for diagnosing diesel fire trucks. For the first time in this type of technology, the possibility of using stable smoke emission data as a reliable input parameter for models based on diffusion limitation theory was demonstrated. The practical significance of the results lies in the creation of a tool for generating a reliable evidence base for environmental monitoring, proactively identifying technical faults and fire-hazardous conditions, and developing systems for predicting the remaining life of fire suppression systems.
diesel fire trucks, exhaust smoke, free acceleration, robotic manipulator, environmental safety technical standard, catalytic converter
1. Impact of Oxygenated Additives on Soot Properties during Diesel Combustion / N. Palazzo [et al.] // Energies. 2021. Vol. 14. № 1. P. 147–160. DOI:https://doi.org/10.3390/en14010147.
2. Zakharov D., Fadyushin A., Chainikov D. Changes in the environmental sustainability of the urban transport system when introducing paid parking for private vehicles // Resources. 2020. Vol. 9. № 9. P. 90–100. DOI:https://doi.org/10.3390/resources9090100.
3. Donchenko V.V., Chizhova V.S. Sovremennye podhody k ocenke vybrosov zagryaznyayushchih veshchestv avtomobil'nym transportom: sostoyanie, problemy i puti resheniya // Nauchnyj vestnik avtomobil'nogo transporta. 2022. № 1. S. 5–12.
4. Kholod N., Evans M., Kuklinski T. Russia's black carbon emissions: focus on diesel sources // Atmospheric Chemistry and Physics. 2016. Vol. 16. P. 1–27. DOI:https://doi.org/10.5194/acp-2016-475.
5. Lozhkina O.V., Mal'chikov K.B. Opredelenie soderzhaniya pollyutantov v otrabotavshih gazah sudovogo dvigatelya YAMZ-238 GM2 // Problemy upravleniya riskami v tekhnosfere. 2023. № 3 (67). S. 158–168. DOI:https://doi.org/10.61260/1998-8990-2023-3-158-168.
6. Lozhkina O.V., Mal'chikov K.B. Cravnitel'nyj analiz probegovyh vybrosov avtomobilej na razlichnyh vidah topliva pri dorozhnyh zatorah // Vestnik grazhdanskih inzhenerov. 2024. № 2 (103). S. 133–143. DOI:https://doi.org/10.23968/1999-5571-2024-21-2-133-143.
7. Usovershenstvovannaya metodika raschetnogo monitoringa vybrosov parnikovyh gazov ot deyatel'nosti avtomobil'nogo i vnedorozhnogo transporta v Rossijskoj Federacii / Yu.V. Trofimenko [i dr.] // Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 2025. T. 28. № 1. S. 78–96. DOI:https://doi.org/10.26467/2079-0619-2025-28-1-78-96.
8. Mal'chikov K.B., Lozhkina O.V. Monitoring i prognozirovanie opasnogo zagryazneniya vozduha malomernymi sudami i avtotransportom // Vestnik Moskovskogo avtomobil'no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI). 2025. № 1 (80). S. 55–62.
9. Lozhkin V.N., Sacuk I.V. Robotizirovannaya diagnostika chrezvychajno-opasnyh rezhimov ekspluatacii dvigatelej pozharnyh mashin v paradigme intellektualizacii transportnyh sistem // Tekhniko-tekhnologicheskie problemy servisa. 2024. № 4 (70). S. 23–26.
10. Gavkalyuk B.V., Lozhkin V.N. Povyshenie effektivnosti agregatov mobil'nyh sredstv dostavki specializirovannogo oborudovaniya i lichnogo sostava dlya tusheniya pozharov // Problemy upravleniya riskami v tekhnosfere. 2024. № 1 (69). S. 107–113. DOI:https://doi.org/10.61260/1998-8990 2024-1-107-113.
11. Vorohobin A.V., Derkanosova N.M., Manojlina S.Z. Povyshenie ekologicheskoj bezopasnosti porshnevyh dvigatelej vnutrennego sgoraniya // Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2023. T. 16. № 4 (79). S. 93–101. DOI:https://doi.org/10.53914/issn2071 2243_2023_4_93.
12. Wardoyo A.Y.P., Juswono U.P., Noor J.A.E. The association between the diesel exhaust particle exposure from bus emission and the tubular epithelial cell deformation of rats // Environmental Science and Pollution Research. 2020. Vol. 27. P. 23073–23080. DOI:https://doi.org/10.1007/s11356 020-08752-x.
13. Lozhkin V.N. Obespechenie pozharnoj bezopasnosti slozhnyh elektronno-upravlyaemyh termokataliticheskih sistem: teoreticheskie osnovy, diagnostirovanie. SPb. : S.-Peterb. un-t GPS MCHS Rossii, 2023. 284 s.
14. A systematic literature review on indoor PM2.5 concentrations and personal exposure in urban residential buildings / Yu. Liu [et al.] // Heliyon. 2022. Vol. 8. № 8. Art. e10174. DOI:https://doi.org/10.1016/j.heliyon.2022.e10174.
15. Donchenko V.V., Chizhova V.S. Sovremennye tendencii povysheniya ekologicheskoj bezopasnosti avtotransportnyh sredstv – perspektivy vnedreniya ekologicheskogo standarta Evro-7 (po materialam zarubezhnyh istochnikov) // Nauchnyj vestnik avtomobil'nogo transporta. 2023. № 3. S. 10–20.
16. An Overview of Physical and Chemical Features of Diesel Exhaust Particles / X. Wang [et al.] // Journal of the Energy Institute. 2018. Vol. 92. № 6. P. 1864–1888. DOI:https://doi.org/10.1016/j.joei.2018.11.006.
17. Pevnev N.G., Zaloznov A.V. Opisanie matematicheskoj modeli rascheta vremeni nestacionarnogo processa nagreva kataliticheskogo nejtralizatora otrabotavshih gazov // Vestnik Sibirskogo gosudarstvennogo avtomobil'no-dorozhnogo universiteta. 2017. № 4-5 (56-57). S. 25–36.
18. Thermal Sintering and Phosphorus Poisoning of a Layered Diesel Oxidation Catalyst / M. Agote [et al.] // Topics in Catalysis. 2022. Vol. 66. P. 777–786. DOI:https://doi.org/10.1007/s11244-022-01752-w.
19. Lozhkin V.N., Sacuk I.V. Robototekhnicheskij metod kontrolya avarijnyh rezhimov ekspluatacii dvigatelej pozharnyh mashin // Mir transporta i tekhnologicheskih mashin. 2024. № 2-2 (85). S. 91–97. DOI:https://doi.org/10.33979/2073-7432-2024-2-2(85)-91-97.
20. Aktualizaciya ocenok vybrosov parnikovyh gazov ot avtomobil'nogo transporta v Nacional'nom kadastre za 2010–2021 gg. / V.M. Lytov [i dr.] // Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. 2024. T. 35. № 1-2. S. 101–123. DOIhttps://doi.org/10.21513/0207-2564-2024-1-2-101-123.
21. Kuleshov A.S., Fadeev Yu.M., Kuleshov A.A. Razvitie mnogozonnyh modelej dlya rascheta sgoraniya v sovremennyh DVS // Dvigatelestroenie. 2017. № 2 (268). S. 7–10.
22. Vera-Tudela W. An Experimental Study of a Very High-Pressure Diesel Injector (Up to 5000 Bar) by Means of Optical Diagnostics / W. Vera-Tudela [et al.] // Fuel. 2020. Vol. 275. P. 117933. DOI:https://doi.org/10.1016/j.fuel.2020.117933.
23. Lihanov V.A., Lopatin O.P., Kozlov A.N. Modelirovanie sazheobrazovaniya v cilindre dizelya // Nauchno-tehnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki. 2019. T. 25. № 1. S. 47–59. DOI:https://doi.org/10.18721/JEST.25105.
24. Lihanov V.A., Lopatin O.P., Kozlov A.N. Modelirovanie sazheobrazovaniya v cilindre dizelya // Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki. 2019. T. 25. № 1. S. 47–59. DOIhttps://doi.org/10.18721/JEST.25105.




