Russian Federation
employee
Russian Federation
UDC 504.3.054
UDC 628.517.2
This article presents a critical analysis of the development of an approach for inplace diagnostics of fire engine fuel systems and engines using an electronically controlled robotic manipulator under operating conditions. The authors' theoretical concept of this approach is based on empirical relationships between the time interval of a diesel engine's «acceleration» in free acceleration mode, the angular velocities of the crankshaft and the conventional «reference» value of its acceleration in the standardized mode of full fuel delivery. A further development of the theory of a new approach in the field of environmental safety is considered in the mathematical expression of the «instantaneous» inertial load as a function that, in an original way, sums up the argument functions of the main components of the dynamic «resistance» in the control system mode. Calculating these components is the engineering output of a scientific approach that allows for the reliable calculation of «technical environmental safety standards» Applying this approach to research on a D-240L diesel engine resulted in a drag moment value. Statistical studies on 82 PAs established the significance of the smoke emission dependence on mileage, confirming the standard smoke emission range for serviceable Fire Trucks and the expected value of prevented damage from excess fuel consumption of up to 64.6 tons per year.
ecology, fire engine, engine, free acceleration, inertial resistance, modeling, smoke, diagnostics and diagnosis
1. Galimova K.R. Ekologicheskaya bezopasnost' v ekspluatacii pozharnoj i avarijno-spasatel'noj tekhniki // Tendencii razvitiya nauki i obrazovaniya. 2024. № 108-10. S. 27–29. DOI:https://doi.org/10.18411/trnio-04-2024-530. EDN QQCEIE.
2. Obzor i analiz ispytatel'nogo oborudovaniya na baze odnocilindrovogo otseka dlya dovodki rabochego processa dvigatelej vnutrennego sgoraniya / G.S. Kornilov [i dr.] // Dvigatelestroenie. 2025. № 3 (301). S. 3–13.
3. Lozhkin V.N. Elektromekhanicheskij manipulyator dlya vyyavleniya avarijno-opasnyh rezhimov ekspluatacii dizel'nyh mashin v usloviyah Arktiki // Ekstremal'naya robototekhnika. 2021. № 1 (32). S. 123–130.
4. Sacuk I.V. Zakonomernosti raspredeleniya i tekhnicheskogo sostoyaniya ekspluatiruemyh pozharnyh avtomobilej po pokazatelyam konstruktivnoj bezopasnosti silovyh ustanovok // Sibirskij pozharno-spasatel'nyj vestnik. 2022. № 2 (25). S. 31–38.
5. Gavkalyuk B.V., Lozhkin V.N., Smirnov A.S. Teoriya i praktika obespecheniya bezopasnosti primeneniya v usloviyah chrezvychajnyh situacij silovyh ustanovok pozharnyh avtomobilej 4-5 pokolenij // Problemy upravleniya riskami v tekhnosfere. 2023. № 2 (66). S. 8–15.
6. Ivanov K.S., Resnyanskij S.G., Moroz N.A. Vliyanie dinamicheskih nagruzok na prochnost' detalej mashin i rezhimy dvizheniya pozharnyh avtomobilej // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2022. № 3. S. 75–80. DOI:https://doi.org/10.24412/2071-6168-2022-3-75-80.
7. Lozhkina O.V., Mal'chikov K.B. Sravnitel'nyj analiz soderzhaniya pollyutantov v otrabotavshih gazah silovyh ustanovok malomernyh sudov i avtotransportnyh sredstv // Dvigatelestroenie. 2024. № 1 (295). S. 21–32.
8. Trofimenko Yu.V., Filippova R.V., Fen'kov I.A. Zarubezhnyj opyt vnedreniya elektrobusnogo transporta v megapolisah: perekhod na nizkouglerodnye transportnye sredstva // Mir transporta i tekhnologicheskih mashin. 2025. № 2-1 (89). S. 87–92. DOI:https://doi.org/10.33979/2073-7432-2025-2-1(89)-87-92.
9. Lozhkina O.V. Monitoring i prognozirovanie opasnogo tekhnogennogo zagryazneniya atmosfery parnikovymi gazami transporta / pod obshch. red. B.V. Gavkalyuka. SPb.: Sankt-Peterburgskij universitet GPS MChS Rossii, 2023. 166 s.
10. Sovremennye metody ispytanij transportnyh sredstv na ekologicheskuyu bezopasnost' / D.A. Zagarin [i dr.] // Trudy NAMI. 2022. № 2 (289). S. 34–40. DOI:https://doi.org/10.51187/0135-3152-2022-2-34-40.
11. Osipov D.V. Metodika prognozirovaniya effektivnosti i pozharnoj bezopasnosti nejtralizatorov transportnyh sredstv: dis. … kand. tekhn. nauk. SPb., 2011. 162 s.
12. Boldin A.P., Sarbaev V.I., Chusova A.S. Vozmozhnosti ekspluatacionnogo diagnostirovaniya avtomobilej Mercedes-Benz Sprinter special'nogo naznacheniya dlya povysheniya effektivnosti processov i tekushchego remonta, osushchestvlyaemyh na avtotransportnom predpriyatii v kooperacii s firmennymi STO // Vestnik Moskovskogo avtomobil'no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI). 2020. № 4 (63). S. 3–13.
13. Lozhkin V.N. Obespechenie pozharnoj bezopasnosti slozhnyh elektronno-upravlyaemyh termokataliticheskih sistem: teoreticheskie osnovy, diagnostirovanie: monografiya. SPb.: Sankt-Peterburgskij universitet GPS MChS Rossii, 2023. 284 s.
14. Dr. Aung Ko Latt, Dr. Than Naing Win. Dynamic Force Analysis of Diesel Engine Crankshaft // Iconic Research and Engineering Journals. 2019. № 3 (2). P. 606–611. URL: https://www.irejournals.com/paper-details/1701601 (data obrashcheniya: 30.11.2025).
15. Comanescu A., Rotaru A., Petrescu F.I.T. Study of forces in a 2T9R robot mechanism // Independent Journal of Management and Production. 2021. № 12 (9). P. 741–773. DOI:https://doi.org/10.14807/ijmp.v12i9.1554.
16. Surov I.A. Zakony robototekhniki Azimova: mirovozzrencheskie osnovy i kognitivnye iskazheniya // Sibirskij filosofskij zhurnal. 2024. № 4. S. 5–24.
17. Ustrojstvo izmeneniya skorostnogo rezhima dizelya pri izmerenii dymnosti otrabotavshih gazov: pat. 226702 Ros. Federaciya / Galajko V.V., Lozhkin V.N., Sacuk I.V.; zayavitel' i patentoobladatel' Galajko V.V., Lozhkin V.N., Sacuk I.V. – № 2024103760; zayavl. 15.02.2024; opubl. 18.06.2024.
18. Gavkalyuk B.V., Lozhkin V.N. Diagnostika mobil'nyh sredstv pozharnoj ohrany s pomoshch'yu robota-manipulyatora dinamicheskogo nagruzheniya dvigatelya // Problemy upravleniya riskami v tekhnosfere. 2025. № 1 (73). S. 41–49. DOI:https://doi.org/10.61260/1998-8990-2025-1-41-49.
19. Sacuk I.V. Teoreticheskaya model' diagnostirovaniya silovyh ustanovok pozharnyh avtomobilej po kriteriyam konstruktivnoj (pozharnoj) bezopasnosti // Sibirskij pozharno-spasatel'nyj vestnik. 2024. T. 32. № 1. S. 160–168. DOI:https://doi.org/10.34987/vestnik.sibpsa.2024.66.36.017.
20. Lozhkin V.N., Sacuk I.V. Diagnostirovanie dizel'nyh pozharnyh avtomobilej s ispol'zovaniem avtomatizirovannogo metoda kontrolya ih ekologicheskoj bezopasnosti v ekspluatacii // Mir transporta i tekhnologicheskih mashin. 2025. № 4 (91). S. 52–58. DOI:https://doi.org/10.33979/2073-7432-2025-4(91)-52-58. EDN SAJRXP.
21. Kalender S., Ergin S. Experimental Investigation into the Particulate Emissions from a Ferry Fuelled with Ultra-Low Sulfur Diesel // Journal of Marine Science and Technology. 2017. Vol. 25. P. 499–507. DOI:https://doi.org/10.6119/JMST-017-0418-2.
22. Impact of Oxygenated Additives on Soot Properties during Diesel Combustion / N. Palazzo [et al.] // Energies. 2021. Vol. 14. № 1. P. 147–160. DOI:https://doi.org/10.3390/en14010147.




